Numerical study on particle dispersion and deposition in a scaled ventilated chamber using a lattice Boltzmann method

L. Ding, J. L S Fung, S. Seepana, A. C K Lai

    Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

    9 Citations (Scopus)

    Abstract

    This study numerically investigates particle dispersion and deposition in a scaled ventilated chamber. Three-dimensional airflow simulations at two different Reynolds numbers such as 150 and 300 were performed using a lattice Boltzmann (LB) method, while a Lagrangian particle tracking method was employed to compute particle dynamics in the airflow. Instead of the commonly used lattice Bhatnagar-Gross-Krook (LBGK) model, a massively parallel code using multiple-relaxation-time LB (MRT-LB) method due to its better performance on numerical stability was developed for three-dimensional particle dynamics problems. Good agreement was observed between present airflow simulation and FLUENT results. It was also found that the three-dimensional and two-dimensional airflow patterns in ventilated chamber were very distinct from each other, indicating that two-dimensional computation is not appropriate for such kind of problem, even at low Reynolds numbers. For the particle dispersion and deposition study, six particle size groups ranging from 0.051 to 10μm were used. The particle results were verified by comparing them with FLUENT discrete phase model (DPM) prediction. Then the characteristics of particle dispersion and deposition were analyzed. © 2011 Elsevier Ltd.
    Original languageEnglish
    Pages (from-to)1-11
    JournalJournal of Aerosol Science
    Volume47
    DOIs
    Publication statusPublished - May 2012

    Research Keywords

    • Lagrangian particle tracking method
    • Multiple-relaxation-time lattice Boltzmann method
    • Particle deposition
    • Particle dispersion

    Fingerprint

    Dive into the research topics of 'Numerical study on particle dispersion and deposition in a scaled ventilated chamber using a lattice Boltzmann method'. Together they form a unique fingerprint.

    Cite this