Numerical modeling of exhaled droplet nuclei dispersion and mixing in indoor environments

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

87 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)736-744
Journal / PublicationJournal of Hazardous Materials
Volume167
Issue number1-3
Publication statusPublished - 15 Aug 2009

Abstract

The increasing incidence of indoor airborne infections has prompted attention upon the investigation of expiratory droplet dispersion and transport in built environments. In this study, a source (i.e. a patient who generates droplets) and a receiver (i.e. a susceptible object other than the source) are modeled in a mechanically ventilated room. The receiver's exposure to the droplet nuclei is analyzed under two orientations relative to the source. Two droplet nuclei, 0.1 and 10 μm, with different emission velocities, are selected to represent large expiratory droplets which can still be inhaled into the human respiratory tracts. The droplet dispersion and mixing characteristics under well-mixed and displacement ventilation schemes are evaluated and compared numerically. Results show that the droplet dispersion and mixing under displacement ventilation is consistently poorer. Very low concentration regions are also observed in the displacement scheme. For both ventilation schemes, the intake dose will be reduced substantially if the droplets are emitted under the face-to-wall orientation rather than the face-to-face orientation. Implications of using engineering strategies for reducing exposure are briefly discussed. © 2009 Elsevier B.V. All rights reserved.

Research Area(s)

  • Drift-flux model, Mixing, Particle dispersion, Ventilation

Citation Format(s)

Numerical modeling of exhaled droplet nuclei dispersion and mixing in indoor environments. / Mui, K. W.; Wong, L. T.; Wu, C. L. et al.
In: Journal of Hazardous Materials, Vol. 167, No. 1-3, 15.08.2009, p. 736-744.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review