Nucleation and growth of {113} defects and {111} dislocation loops in silicon-implanted silicon

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)431-436
Journal / PublicationMaterials Research Society Symposium - Proceedings
Volume469
Publication statusPublished - 1997
Externally publishedYes

Conference

TitleProceedings of the 1997 MRS Spring Symposium
CitySan Francisco, CA, USA
Period1 - 4 April 1997

Abstract

Plan-view and cross-sectional transmission electron microscopy have been used to study the microstructural characterization of the nucleation and growth behavior of {113} rodlike defects, as well as their correlation with {111} dislocation loops in silicon amorphized with 50 keV, 3.6×1014 Si/cm2, 8.0 mA and annealed by rapid thermal anneals at temperatures from 500 °C to 1100 °C for various times. We found that the nucleations of the {113} rodlike defects and {111} dislocation loops are two separate processes. At the beginning of anneals, excess interstitials accumulate and form circular interstitial clusters at the preamorphous/crystalline interface at as low as 600 °C for 1 s. Then these interstitial clusters grow along the 〈110〉 direction to form {113} rodlike defects. Later, while the {113} defects have begun to grow and/or dissolve into matrix, the {111} faulted Frank dislocation loops start to form. We also found that the initial interstitial clusters prefer to grow along the 〈110〉 directions inclined to the implantation surface.

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].