Novel gradient casting method provides high-throughput assessment of blended polyester poly(lactic-co-glycolic acid) thin films for parameter optimization

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

20 Scopus Citations
View graph of relations

Author(s)

  • Terry W.J. Steele
  • Charlotte L. Huang
  • Saranya Kumar
  • Scott Irvine
  • Joachim S.C. Loo
  • Subbu S. Venkatraman

Detail(s)

Original languageEnglish
Pages (from-to)2263-2270
Journal / PublicationActa Biomaterialia
Volume8
Issue number6
Online published18 Jan 2012
Publication statusPublished - Jul 2012
Externally publishedYes

Abstract

Pure polymer films cannot meet the diverse range of controlled release and material properties demanded for the fabrication of medical implants or other devices. Additives are added to modulate and optimize thin films for the desired qualities. To characterize the property trends that depend on additive concentration, an assay was designed which involved casting a single polyester poly(lactic-co-glycolic acid) (PLGA) film that blends a linear gradient of any PLGA-soluble additive desired. Four gradient PLGA films were produced by blending polyethylene glycol or the more hydrophobic polypropylene glycol. The films were made using a custom glass gradient maker in conjunction with a 180 cm film applicator. These films were characterized in terms of thickness, percent additive, total polymer (PLGA + additive), and controlled drug release using drug-like fluorescent molecules such as coumarin 6 (COU) or fluorescein diacetate (FDAc). Material properties of elongation and modulus were also accessed. Linear gradients of additives were readily generated, with phase separation being the limiting factor. Additive concentration had a Pearsons correlation factor (R) of >0.93 with respect to the per cent total release after 30 days for all gradients characterized. Release of COU had a near zero-order release over the same time period, suggesting that coumarin analogs may be suitable for use in PLGA/polyethylene glycol or PLGA/polypropylene glycol matrices, with each having unique material properties while allowing tuneable drug release. The gradient casting method described has considerable potential in offering higher throughput for optimizing film or coating material properties for medical implants or other devices. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Research Area(s)

  • Drug delivery, Gradients, Mechanical properties, PLGA, Thin films

Citation Format(s)

Novel gradient casting method provides high-throughput assessment of blended polyester poly(lactic-co-glycolic acid) thin films for parameter optimization. / Steele, Terry W.J.; Huang, Charlotte L.; Kumar, Saranya et al.
In: Acta Biomaterialia, Vol. 8, No. 6, 07.2012, p. 2263-2270.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review