Abstract
The effects of cold-rolling (20% thickness reduction) and sensitization treatment (600 °C/10 h) on the microstructure, tensile properties and susceptibility to stress corrosion cracking of 304 stainless steel in 80 °C MgCl2 (40 wt.%) solution were investigated. The increase in hydrogen traps, which retarded hydrogen diffusion to the strained region, accounted for the low loss in notched tensile strength (NTS) of such a cold-rolled specimen, as compared to the solution-treated specimen in the corrosive environment. By contrast, the high NTS loss of sensitized specimens in MgCl2 solution was attributed mainly to the formation of stress-induced martensite near grain boundary regions. © 2008 Elsevier Ltd. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 380-386 |
Journal | Corrosion Science |
Volume | 51 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2009 |
Externally published | Yes |
Bibliographical note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].Research Keywords
- A. Stainless steel
- C. Hydrogen embrittlement
- C. Stress corrosion