Nonstationary iterated thresholding algorithms for image deblurring

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

21 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)717-736
Journal / PublicationInverse Problems and Imaging
Volume7
Issue number3
Publication statusPublished - Aug 2013
Externally publishedYes

Abstract

We propose iterative thresholding algorithms based on the iterated Tikhonov method for image deblurring problems. Our method is similar in idea to the modified linearized Bregman algorithm (MLBA) so is easy to implement. In order to obtain good restorations, MLBA requires an accurate estimate of the regularization parameter α which is hard to get in real applications. Based on previous results in iterated Tikhonov method, we design two nonstationary iterative thresholding algorithms which give near optimal results without estimating α. One of them is based on the iterative soft thresholding algorithm and the other is based on MLBA. We show that the nonstationary methods, if converge, will converge to the same minimizers of the stationary variants. Numerical results show that the accuracy and convergence of our nonstationary methods are very robust with respect to the changes in the parameters and the restoration results are comparable to those of MLBA with optimal α.

Research Area(s)

  • Image deblurring, Iterated Tikhonov, Linearized Bregman iteration, Nonstationary parameter sequence, Soft thresholding