Nonlocal metasurface for dark-field edge emission
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | eadn2752 |
Journal / Publication | Science Advances |
Volume | 10 |
Issue number | 16 |
Online published | 17 Apr 2024 |
Publication status | Published - Apr 2024 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85190861738&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(3ba05234-95f4-4926-a138-163be258ec75).html |
Abstract
Nonlocal effects originating from interactions between neighboring meta-atoms introduce additional degrees of freedom for peculiar characteristics of metadevices, such as enhancement, selectivity, and spatial modulation. However, they are generally difficult to manipulate because of the collective responses of multiple meta-atoms. Here, we experimentally demonstrate the nonlocal metasurface to realize the spatial modulation of dark-field emission. Plasmonic asymmetric split rings (ASRs) are designed to simultaneously excite local dipole resonance and nonlocal quasi-bound states in the continuum and spatially extended modes. With one type of unit, nonlocal effects are tailored by varying array periods. ASRs at the metasurface’s edge lack sufficient interactions, resulting in stronger dark-field scattering and thus edge emission properties of the metasurface. Pixel-level spatial control is demonstrated by simply erasing some units, providing more flexibility than conventional local metasurfaces. This work paves the way for manipulating nonlocal effects and facilitates applications in optical trapping and sorting at the nanoscale.
© 2024 the Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. no claim to original U.S. Government Works
© 2024 the Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. no claim to original U.S. Government Works
Research Area(s)
Citation Format(s)
Nonlocal metasurface for dark-field edge emission. / Yao, Jin; Hsu, Wei-Lun; Liang, Yao et al.
In: Science Advances, Vol. 10, No. 16, eadn2752, 04.2024.
In: Science Advances, Vol. 10, No. 16, eadn2752, 04.2024.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available