Nonlinear plane waves in finite deformable infinite Mooney elastic materials

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

5 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)71-80
Journal / PublicationJournal of Elasticity
Volume67
Issue number2
Publication statusPublished - 2002

Abstract

For infinite perfectly elastic Mooney materials, nonlinear plane waves are examined in both two and three dimensions. In two dimensions, longitudinal and shear plane waves are examined, while in three dimensions, longitudinal and torsional plane waves are considered. These exact dynamic deformations, applying to the incompressible perfectly elastic Mooney material, can be viewed as extensions of the corresponding static deformations first derived by Adkins [1] and Klingbeil and Shield [2]. Furthermore, the Mooney strain-energy function is the most general material admitting nontrivial dynamic deformations of this type. For two dimensions the determination of plane wave solutions reduces to elementary mathematical analysis, while in three dimensions an integral of the governing system of highly nonlinear ordinary differential equations is determined. In the latter case, solutions corresponding to particular parameter values are shown graphically.

Research Area(s)

  • Dynamic deformations, Incompressible, Mooney strain-energy, Nonlinear plane waves, Perfect elasticity