Projects per year
Abstract
Evaluating the hydroelastic responses of underwater cementitious structural elements is critical for ensuring the sustainability and durability of energy-saving marine infrastructures. Existing work on the hydroelastic analysis of porous structures has been mostly developed using the general elastic constitutive relation; however, it fails to capture the influence of saturation. To fill this knowledge gap, we for the first time propose a novel fluid-porous structure interactive model that incorporates the combined effects of hydrodynamic pressure and saturation-induced pore pressure. One more pioneering effort is to solve this nonlinear hydroelastic problem by introducing peridynamic differential operator (PDDO). It is worth noting that the introduction of PDDO removes the inherent drawback employing the local-theory based techniques, namely being prone to singularities arising from the presence of discontinuity. The accuracy and reliability of the proposed numerical framework are validated by comparing the results with the degraded model in the reported literature. Moreover, our results highlight that the angular frequencies are underestimated when ignoring the effect of saturation in foamed concrete beams. The presented method provides a profound understanding of the underwater structural dynamic monitoring that benefits the design of marine infrastructures. © 2024 Elsevier Ltd
Original language | English |
---|---|
Article number | 118642 |
Journal | Journal of Sound and Vibration |
Volume | 592 |
Online published | 25 Jul 2024 |
DOIs | |
Publication status | Published - 10 Dec 2024 |
Funding
The authors acknowledge the supports provided by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 9043135, CityU 11202721, and Project No. 8730079, C1014-22G).
Research Keywords
- Fluid-structure interaction
- Foamed concrete
- Nonlinear hydroelastic vibration
- Peridynamic differential operator
Fingerprint
Dive into the research topics of 'Nonlinear hydroelastic vibration of foamed concrete beams via peridynamic differential operator'. Together they form a unique fingerprint.Projects
- 2 Active
-
CRF: An Upcycling Solution to the Paradox of Clean Energy Development
LIEW, K. M. (Principal Investigator / Project Coordinator), DAI, J. (Co-Principal Investigator) & ZHANG, X. (Co-Principal Investigator)
30/06/23 → …
Project: Research
-
GRF: Fire Resistance and Mechanical Performance of Laminated Glass Facades Subject to A Down-Flowing Water Film
LIEW, K. M. (Principal Investigator / Project Coordinator), KODUR, V. K. (Co-Investigator) & Sun, J. (Co-Investigator)
1/01/22 → …
Project: Research