Noise Tolerance Strategy Based on Virtual Capacitor for DC–DC Converters with Continuous Control Set Model Predictive Control

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

  • Zheng Dong
  • Qian Chen
  • Jiawang Qin
  • Zhenbin Zhang
  • Yonggang Xu

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)9084-9088
Journal / PublicationIEEE Transactions on Power Electronics
Volume39
Issue number8
Online published22 Apr 2024
Publication statusPublished - Aug 2024

Abstract

Noise can have a negative impact on the performance of DC-DC converters with continuous control set model predictive control (CCS-MPC). This issue is commonly encountered, making it difficult to effectively apply CCS-MPC in DC-DC converters. In this letter, we present a noise tolerance method for DC-DC converters with CCS-MPC that utilizes a virtual capacitor. This method offers a simple and effective solution to address the aforementioned problem while enhancing system robustness. To illustrate, we examine the noise generation mechanism and establish a predictive model using a dual-activebridge (DAB) converter as an example. Subsequently, we delve into the influence of noise on MPC and propose a noise tolerance method centered around the virtual capacitor. Importantly, this method does not incur additional costs, computational burden, or voltage/current ripples in the system, while preserving the inherent dynamic performance of MPC. Finally, we validate the effectiveness of the proposed method through experimental results using the TMS320F28377D as the core controller. © 2024 IEEE.

Research Area(s)

  • Capacitors, continuous control set model predictive control (CCS-MPC), DC-DC converters, DC-DC power converters, dual active bridge (DAB) converters, Noise, Noise measurement, noise tolerance, Quantization (signal), virtual capacitors, Voltage control, Voltage measurement

Citation Format(s)

Noise Tolerance Strategy Based on Virtual Capacitor for DC–DC Converters with Continuous Control Set Model Predictive Control. / Dong, Zheng; Chen, Qian; Qin, Jiawang et al.
In: IEEE Transactions on Power Electronics, Vol. 39, No. 8, 08.2024, p. 9084-9088.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review