Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | eaaz0952 |
Journal / Publication | Science Advances |
Volume | 6 |
Issue number | 18 |
Online published | 1 May 2020 |
Publication status | Published - 2020 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85084641128&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(796ff859-0829-4bc9-b019-8ae9ecfbfdd8).html |
Abstract
Because of poor engraftment and safety concerns regarding mesenchymal stem cell (MSC) therapy, MSC-derived exosomes have emerged as an alternative cell-free therapy for myocardial infarction (MI). However, the diffusion of exosomes out of the infarcted heart following injection and the low productivity limit the potential of clinical applications. Here, we developed exosome-mimetic extracellular nanovesicles (NVs) derived from iron oxide nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs). The retention of injected IONP-MSC-derived NVs (IONP-NVs) within the infarcted heart was markedly augmented by magnetic guidance. Furthermore, IONPs significantly increased the levels of therapeutic molecules in IONP-MSCs and IONP-NVs, which can reduce the concern of low exosome productivity. The injection of IONP-NVs into the infarcted heart and magnetic guidance induced an early shift from the inflammation phase to the reparative phase, reduced apoptosis and fibrosis, and enhanced angiogenesis and cardiac function recovery. This approach can enhance the therapeutic potency of an MSC-derived NV therapy.
Research Area(s)
Citation Format(s)
Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair. / Lee, Ju-Ro; Park, Bong-Woo; Kim, Jonghoon et al.
In: Science Advances, Vol. 6, No. 18, eaaz0952, 2020.
In: Science Advances, Vol. 6, No. 18, eaaz0952, 2020.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available