Nanotherapeutics in angiogenesis: synthesis and in vivo assessment of drug efficacy and biocompatibility in zebrafish embryos

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

29 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)2007-2021
Journal / PublicationInternational Journal of Nanomedicine
Volume6
Online published15 Sept 2011
Publication statusPublished - 2011

Link(s)

Abstract

Carbon nanotubes have shown broad potential in biomedical applications, given their unique mechanical, optical, and chemical properties. In this pilot study, carbon nanotubes have been explored as multimodal drug delivery vectors that facilitate antiangiogenic therapy in zebrafish embryos. Three different agents, ie, an antiangiogenic binding site (cyclic arginine-glycin-easpartic acid), an antiangiogenic drug (thalidomide), and a tracking dye (rhodamine), were conjugated onto single-walled carbon nanotubes (SWCNT). The biodistribution, efficacy, and biocompatibility of these triple functionalized SWCNT were tested in mammalian cells and validated in transparent zebrafish embryos. Accumulation of SWCNT-associated nanoconjugates in blastoderm cells facilitated drug delivery applications. Mammalian cell xenograft assays demonstrated that these antiangiogenic SWCNT nanoconjugates specifically inhibited ectopic angiogenesis in the engrafted zebrafish embryos. This study highlights the potential of using SWCNT for generating efficient nanotherapeutics.

Research Area(s)

Citation Format(s)

Download Statistics

No data available