Nanobubble-assisted scaling inhibition in membrane distillation for the treatment of high-salinity brine

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

29 Scopus Citations
View graph of relations

Author(s)

  • Muhammad Usman Farid
  • Cheng-Hao Lee
  • James Kar-Hei Fang

Detail(s)

Original languageEnglish
Article number117954
Journal / PublicationWater Research
Volume209
Online published9 Dec 2021
Publication statusPublished - 1 Feb 2022

Abstract

In this study, we report the use of nanobubbles (NBs) as a simple and facile approach to effectively delay scaling in membrane distillation (MD) during the treatment of highly saline feed (100 g L−1). Unlike conventional gas bubbling in MD for improving the hydrodynamic flow conditions in the feed channel, here we generated air NBs with an average size of 128.81 nm in the feed stream and examined their impact on membrane scaling inhibition during MD operation. Due to their small size, neutral buoyancy, and negative surface charge, NBs remain in suspension for a longer time (14 days), providing homogenous mixing throughout the entire feed water. The MD performance results revealed that severe membrane scaling happened during the DCMD treatment of high salinity brine in the absence of nanobubbles, which dramatically reduced the distillate flux to zero after 13 h. A one-time addition of air NBs in the saline feed significantly reduced salt precipitation and crystal deposition on the PVDF membrane surface, delayed the occurrence of flux decline, prevented membrane wetting, thereby prolonging the effective MD operating time. With similar feed concentration and operating conditions, only 63% flux decline after 98 h operation was recorded in nanobubble-assisted MD. Two key explanations were suggested for the delayed membrane scaling upon addition of air NBs in the MD feed: (1) NB-induced turbulent flow in the feed channel that increases the surface shear forces at the membrane surface, alleviating both temperature and concentration polarization effect, (2) electrostatic attractions of the counterions to the negatively charged NBs, which reduces the availability of these ions in the bulk feed for scale formation.

Research Area(s)

  • Brine treatment, Charge, Hydrodynamic disturbance, Membrane distillation, Nanobubbles, Scaling

Citation Format(s)