Multi-resonance and ultra-wideband terahertz metasurface absorber based on micro-template-assisted self-assembly method

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

8 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)2547-2556
Journal / PublicationOptics Express
Volume28
Issue number2
Online published17 Jan 2020
Publication statusPublished - 20 Jan 2020

Link(s)

Abstract

As a promising platform for multi-functional terahertz devices, metasurface absorbers have received widespread attention in recent years. However, due to the existence of manufacturing difficulties, high cost, fragility, single or narrow absorption and other disadvantages, their application ranges are severely limited. Therefore, to effectively solve these problems, we have designed a flexible and high-precision terahertz metasurface absorber based on the micro-template assisted self-assembly method. Free from high cost, complicated process and time-consumption, the sandwich structure terahertz metasurface absorber consisting of a ceramic microspheres layer, a dielectric spacer layer, and a metal copper film is fabricated economically. On the one hand, through assembling the microspheres on the dielectric spacer in a periodic pattern arrangement, multiple resonances can be observed with a maximum absorption rate of up to 92.5% at 0.745 THz and are insensitive to the polarization of incident light. On the other hand, by attaching the microspheres to the dielectric layer in a compact configuration, 90% absorption bandwidth beyond 1.2 THz can be observed with a central frequency of 1.8 THz. The theoretical model of multiple reflection and interference is employed to explain these absorption characteristics. Considering the flexible design and high-throughput manufacturing processes, this work provides a promising platform for the development of high-efficiency and multi-functional terahertz devices.

Research Area(s)

Citation Format(s)

Multi-resonance and ultra-wideband terahertz metasurface absorber based on micro-template-assisted self-assembly method. / Yang, Daquan; Zhang, Chao; Ju, Xiacao; Ji, Yuefeng; Lan, Chuwen.

In: Optics Express, Vol. 28, No. 2, 20.01.2020, p. 2547-2556.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review