Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)9862-9871
Journal / PublicationEnvironmental Science & Technology
Volume54
Issue number16
Online published15 Jul 2020
Publication statusPublished - 18 Aug 2020

Abstract

Photolysis of iron chlorides is a well-known photolytic source of Cl in environmental waters. However, the role of particulate chlorine radicals (Cl and Cl2-) in their multiphase oxidative potential has been much less explored. Herein, we examine the effect of Cl/Cl2•- produced from photolysis of particulate iron chlorides on atmospheric multiphase oxidation. As a model system, experiments on multiphase oxidation of SO2 by Cl/Cl2- were performed. Fast sulfate production from SO2 oxidation was observed with reactive uptake coefficients of ∼10-5, comparable to the values necessary for explaining the observations in the haze events in China. The experimental and modeling results found a good positive correlation between the uptake coefficient, ΥSO2, and the Cl production rate, d[Cl]/dt, as ΥSO2 = 5.3 × 10-6 × log(d[Cl]/dt) + 4.9 × 10-5. When commonly found particulate dicarboxylic acids (oxalic acid or malonic acid) were added, sulfate production was delayed due to the competition of Fe3+ between chloride and the dicarboxylic acid for its complexation at the initial stage. After the delay, comparable sulfate production was observed. The present study highlights the importance of photochemistry of particulate iron chlorides in multiphase oxidation processes in the atmosphere.

Citation Format(s)

Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production. / Gen, Masao; Zhang, Ruifeng; Li, Yongjie; Chan, Chak K.

In: Environmental Science & Technology, Vol. 54, No. 16, 18.08.2020, p. 9862-9871.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review