Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

4 Scopus Citations
View graph of relations

Author(s)

  • Chuen Rue Ng
  • Patrique Fiedler
  • Levin Kuhlmann
  • David Liley
  • Beatriz Vasconcelos
  • Carlos Fonseca
  • Gabriella Tamburro
  • Silvia Comani
  • Troby Ka-Yan Lui
  • Indhika Fauzhan Warsito
  • Eko Supriyanto
  • Jens Haueisen

Detail(s)

Original languageEnglish
Article number8079
Journal / PublicationSensors
Volume22
Issue number20
Online published21 Oct 2022
Publication statusPublished - Oct 2022

Link(s)

Abstract

Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain–computer interfaces. Different dry electrode technologies have been proposed and validated in comparison to conventional gel-based electrodes. Most previous studies have been performed at a single center and by single operators. We conducted a multi-center and multi-operator study validating multipin dry electrodes to study the reproducibility and generalizability of their performance in different environments and for different operators. Moreover, we aimed to study the interrelation of operator experience, preparation time, and wearing comfort on the EEG signal quality. EEG acquisitions using dry and gel-based EEG caps were carried out in 6 different countries with 115 volunteers, recording electrode-skin impedances, resting state EEG and evoked activity. The dry cap showed average channel reliability of 81% but higher average impedances than the gel-based cap. However, the dry EEG caps required 62% less preparation time. No statistical differences were observed between the gel-based and dry EEG signal characteristics in all signal metrics. We conclude that the performance of the dry multipin electrodes is highly reproducible, whereas the primary influences on channel reliability and signal quality are operator skill and experience.

Research Area(s)

  • electroencephalography, dry electrodes, multi-center, multi-operator, validation, evoked activity, resting state, brain imaging

Citation Format(s)

Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps. / Ng, Chuen Rue ; Fiedler, Patrique; Kuhlmann, Levin et al.
In: Sensors, Vol. 22, No. 20, 8079, 10.2022.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

Download Statistics

No data available