Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’

Xueqin Zhang, Georgina H. Joyce, Andy O. Leu, Jing Zhao, Hesamoddin Rabiee, Bernardino Virdis, Gene W. Tyson, Zhiguo Yuan, Simon J. McIlroy, Shihu Hu*

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

38 Citations (Scopus)
42 Downloads (CityUHK Scholars)

Abstract

Anaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by ‘Candidatus Methanoperedens nitroreducens’, an ANME acclimated to nitrate reduction. Ferrous iron-targeted fluorescent assays, metatranscriptomics, and single-cell imaging suggest that ‘Ca. M. nitroreducens’ uses surface-localized redox-active cytochromes for metal reduction. Electrochemical and Raman spectroscopic analyses also support the involvement of c-type cytochrome-mediated EET for electrode reduction. Furthermore, several genes encoding menaquinone cytochrome type-c oxidoreductases and extracellular MHCs are differentially expressed when different electron acceptors are used. © 2023, Springer Nature Limited.
Original languageEnglish
Article number6118
JournalNature Communications
Volume14
Online published30 Sept 2023
DOIs
Publication statusPublished - 2023

Publisher's Copyright Statement

  • This full text is made available under CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/

Fingerprint

Dive into the research topics of 'Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’'. Together they form a unique fingerprint.

Cite this