Monte Carlo simulation of the solid to superliquid phase transition of Langmuir monolayers. II. Characteristics of phase transition

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

14 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1961-1966
Journal / PublicationJournal of Chemical Physics
Volume106
Issue number5
Publication statusPublished - 1 Feb 1997
Externally publishedYes

Abstract

The restricted-to-free rotator phase transition of fatty acid monolayers has been modeled using a potential which represents the amphiphiles as planar cross sections of fourfold symmetry. Using much larger system sizes than paper I [D. R. Swanson, R. J. Hardy, and C. J. Eckhardt, J. Chem. Phys. 99, 8194 (1993)], Monte Carlo simulations of the isobaric-isothermal ensemble of model systems with varied number of objects were undertaken to study the effect of system size on the characteristics and order of the phase transition. A peak in the specific heat vs temperature curve was observed near the transition. For each system size, the maxima of the peak showed a linear dependence on the area, which is characteristic of a first order transition. The latter is further confirmed from the observation of a small "van der Waals" loop by increasing the volume at a constant temperature. The result of this simulation matches the qualitative behavior of experimental observations of monolayers, which undergo a weakly first order transition. Additional similarity with experiment was found by the determination that the simulated superflu id phase has the short range translational order and quasilong range bond orientational order characteristic of a hexatic phase. © 1997 American Institute of Physics.

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.

Citation Format(s)