Modulation of narrowband and broadband gamma connectivity in retinal degeneration mice according to electrical stimulation pulse width

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations


Original languageEnglish
Pages (from-to)148-155
Journal / PublicationHKIE Transactions
Issue number4
Publication statusPublished - 11 Jan 2021


Brain connectivity involves the structural, functional and effective communication between neurons across brain regions and is expressed in neuronal oscillations. Previous research has reported the evidence of two types of gamma oscillations namely the broadband gamma (30 Hz - 90 Hz) and narrowband gamma (55 Hz - 70 Hz) oscillations which have been implicated in excitatory and inhibitory network transmission. There is presently no systematic investigation of the relationship between electrical stimulation pulse width and narrow or broadband gamma oscillations in visual-deficient mice. In the current study, we set out to bridge this gap in knowledge by exploring the modulation of brain connectivity indices in broadband gamma and narrowband gamma oscillations in response to varying electrical stimulation pulse width in retinal degeneration (rd) mice. The results revealed that a low pulse width (0.5 ms/phase) strongly enhances coherence and directional connectivity of broadband and narrowband gamma oscillations in contra visual cortex and contra prefrontal cortex of rd mice. This study serves a crucial role in the design and utilisation of visual prostheses by contributing to the understanding of information transmission between different brain regions under retinal electrical stimulation in visual-deficit population.

Research Area(s)

  • Biomedical engineering, retinal degeneration, electrical stimulation, connectivity, retinal prosthesis

Bibliographic Note

Publication date information for this publication is provided by the author(s) concerned.