Modeling temporal-spatial correlations for crime prediction

Xiangyu Zhao, Jiliang Tang

Research output: Chapters, Conference Papers, Creative and Literary WorksRGC 32 - Refereed conference paper (with host publication)peer-review

100 Citations (Scopus)

Abstract

Crime prediction plays a crucial role in improving public security and reducing the financial loss of crimes. The vast majority of traditional algorithms performed the prediction by leveraging demographic data, which could fail to capture the dynamics of crimes in urban. In the era of big data, we have witnessed advanced ways to collect and integrate fine-grained urban, mobile, and public service data that contains various crime-related sources and rich temporal-spatial information. Such information provides better understandings about the dynamics of crimes and has potentials to advance crime prediction. In this paper, we exploit temporal-spatial correlations in urban data for crime prediction. In particular, we validate the existence of temporal-spatial correlations in crime and develop a principled approach to model these correlations into the coherent framework TCP for crime prediction. The experimental results on real-world data demonstrate the effectiveness of the proposed framework. Further experiments have been conducted to understand the importance of temporal-spatial correlations in crime prediction.
Original languageEnglish
Title of host publicationCIKM 2017 - Proceedings of the 2017 ACM Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages497-506
VolumePart F131841
ISBN (Print)9781450349185
DOIs
Publication statusPublished - 6 Nov 2017
Externally publishedYes
Event26th ACM International Conference on Information and Knowledge Management, CIKM 2017 - Singapore, Singapore
Duration: 6 Nov 201710 Nov 2017

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
VolumePart F131841

Conference

Conference26th ACM International Conference on Information and Knowledge Management, CIKM 2017
PlaceSingapore
CitySingapore
Period6/11/1710/11/17

Bibliographical note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].

Research Keywords

  • Crime prediction
  • Crime prevention
  • Temporal-spatial correlation

Fingerprint

Dive into the research topics of 'Modeling temporal-spatial correlations for crime prediction'. Together they form a unique fingerprint.

Cite this