Modeling N2O production by ammonia oxidizing bacteria at varying inorganic carbon concentrations by coupling the catabolic and anabolic processes

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

13 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)386-394
Journal / PublicationChemical Engineering Science
Volume144
Publication statusPublished - 22 Apr 2016
Externally publishedYes

Abstract

Several mathematical models have been proposed to describe nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB) under varying operational conditions. However, none of these N2O models are able to capture N2O dynamics caused by the variation of inorganic carbon (IC) concentration, which has recently been demonstrated to be a significant factor influencing N2O production by AOB. In this work, a mathematical model that describes the effect of IC on N2O production by AOB is developed and experimentally validated. The IC effect is considered by explicitly including the AOB anabolic process in the model, which is coupled to the catabolic process with the use of the Adenosine triphosphate (ATP) and Adenosine diphosphate (ADP) pools. The calibration and validation of the model were conducted using experimental data obtained with two independent cultures, including a full nitrification culture and a partial nitritation culture. The model satisfactorily describes the N2O data from both systems at varying IC concentrations. This new model enhances our ability to predict N2O production by AOB in wastewater treatment systems under varying IC conditions. © 2016 Elsevier Ltd.

Research Area(s)

  • Ammonia oxidizing bacteria, Anabolic and catabolic process, ATP and ADP pools, Inorganic carbon, Mathematical model, Nitrous oxide

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.

Citation Format(s)