Mode coupling in glass optical fibers and liquid-core optical fibers by three methods

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)29-33
Journal / PublicationOptics and Laser Technology
Volume75
Online published24 Jun 2015
Publication statusPublished - Dec 2015

Abstract

We test Slemon and Wells's function and recently reported Hurand et al.'s (Appl. Opt., 50, 492-499, 2011) function for calculation of coupling characteristics in step-index optical fibers against experimental measurements and against calculations by a related method that is based on the power flow equation. Compared are the coupling length Lc (which is the fiber length where the equilibrium mode distribution is achieved) and length zs (where steady-state distribution is achieved) in three step index glass optical fibers as well as a liquid core optical fiber. The two functions, while simpler to apply being just algebraic formulas, are less accurate over a wide range of numerical apertures. It is also shown that fibers with same coupling coefficient can have much different coupling characteristics.

Research Area(s)

  • Coupling length, Mode coupling, Step-index optical fiber

Bibliographic Note

Full text of this publication does not contain sufficient affiliation information. With consent from the author(s) concerned, the Research Unit(s) information for this record is based on the existing academic department affiliation of the author(s).