MLL5 is involved in retinal photoreceptor maturation through facilitating CRX-mediated photoreceptor gene transactivation
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 104058 |
Journal / Publication | iScience |
Volume | 25 |
Issue number | 4 |
Online published | 11 Mar 2022 |
Publication status | Published - 15 Apr 2022 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85126980398&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(92f4ea13-06bb-46dc-8564-97b65eefed82).html |
Abstract
Histone methylation, particularly at the H3K4 position, is thought to contribute to the specification of photoreceptor cell fate; however, the mechanisms linking histone methylation with transcription factor transactivation and photoreceptor gene expression have not yet been determined. Here, we demonstrate that MLL5 is abundantly expressed in the mouse retina. Mll5 deficiency impaired electroretinogram responses, alongside attenuated expression of a number of retina genes. Mechanistic studies revealed that MLL5 interacts with the retina-specific transcription factor, CRX, contributing to its binding to photoreceptor-specific gene promoters. Moreover, depletion of MLL5 impairs H3K4 methylation and H3K79 methylation, which subsequently compromises CRX-CBP assembly and H3 acetylation on photoreceptor promoters. Our data support a scenario in which recognition of H3K4 methylation by MLL5 is required for photoreceptor-specific gene transcription through maintaining a permissive chromatin state and proper CRX-CBP recruitment at promoter sites.
Research Area(s)
- Biological sciences, Molecular biology, Molecular neuroscience, Neuroscience, Omics
Citation Format(s)
MLL5 is involved in retinal photoreceptor maturation through facilitating CRX-mediated photoreceptor gene transactivation. / Zhang, Xiaoming; Zhang, Bo-Wen; Xiang, Lue et al.
In: iScience, Vol. 25, No. 4, 104058, 15.04.2022.
In: iScience, Vol. 25, No. 4, 104058, 15.04.2022.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available