Abstract
The surface nano-crystallization (SNC) of carbon steel was achieved via a high-speed rotating wire-brushing process. Microstructure characteristics of SNC steel were systematically studied. The SNC steel surface exhibited marked deformed plastic flows and high surface roughness. Due to the accumulated strains, a deformed gradient layer with thickness of 40–50 μm was produced, and the grain size of the topmost zone was about 50–100 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that enhanced Fe oxides and Cr oxides were generated. Electrochemical corrosion tests, including open circuit potential (OCP), electrochemical impendence spectroscopy (EIS), potentiodynamic polarization (PDP) and potentiostatic polarization (PP) were conducted to study the corrosion behavior of SNC steel in 3.5 mass% NaCl solution, where an improved corrosion resistance was observed. The resulted improvement resulted from the dominated positive effects (the attached Cr alloying element and enhanced oxide film) against the negative effects (the higher roughness and the improved corrosion activity of surface microstructure).
Original language | English |
---|---|
Pages (from-to) | 1281-1289 |
Journal | Journal of Iron and Steel Research International |
Volume | 23 |
Issue number | 12 |
DOIs | |
Publication status | Published - 1 Dec 2016 |
Externally published | Yes |
Bibliographical note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].Research Keywords
- carbon steel
- electrochemical corrosion behavior
- microstructure
- surface nano-crystallization