Microstructural aspects of superplastic tensile deformation and cavitation failure in a fine-grained yttria stabilized tetragonal zirconia

D. J. Schissler, A. H. Chokshi, T. G. Nieh, J. Wadsworth

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

121 Citations (Scopus)

Abstract

A fine-grained yttria stabilized tetragonal zirconia exhibits an optimum superplastic elongation to failure of ∼ 700% at 1823 K and a strain rate of 8.3 × 10-5s-1. A detailed microstructural investigation of the superplastically deformed specimens reveals the occurrence of extensive concurrent grain growth and internal cavitation. An expression is developed to characterize the extent of deformation enhanced concurrent grain growth, as influenced by experimental factors such as true strain, strain rate and temperature. The variation in the level of concurrent cavitation with strain rate conforms closely to the variation in elongation to failure with strain rate. It is demonstrated that the tendency towards cavity interlinkage in a direction perpendicular to the tensile axis is an important factor influencing the total elongation to failure obtained in superplastic materials. © 1991.
Original languageEnglish
Pages (from-to)3227-3236
JournalActa Metallurgica et Materialia
Volume39
Issue number12
DOIs
Publication statusPublished - Dec 1991
Externally publishedYes

Bibliographical note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].

Fingerprint

Dive into the research topics of 'Microstructural aspects of superplastic tensile deformation and cavitation failure in a fine-grained yttria stabilized tetragonal zirconia'. Together they form a unique fingerprint.

Cite this