Microfluidics study of intracellular calcium response to mechanical stimulation on single suspension cells

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

22 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)1060-1069
Journal / PublicationLab on a Chip - Miniaturisation for Chemistry and Biology
Volume13
Issue number6
Publication statusPublished - 21 Mar 2013

Abstract

A microfluidic microdevice was developed to exert mechanical stimulation on an individual suspension cell for mechanosensation research. In this microfluidic chip, an individual cell was isolated from a population of cells, and trapped in a microchannel with a compressive component made of a deflectable membrane. The mechanosensation of HL60 cells (leukemic cells) was studied using this chip, and the results showed that mechanical stimulations could trigger extracellular calcium to flow into HL60 cells through ion channels on cell membranes. The tension on individual HL60 cells exerted by the microdevice was showed large variations in the threshold of mechanosensation activation. In contrast to previous reports using patch clamp technique, there was little influence of cytoskeleton interruption on HL60 cell mechanosensation triggered by whole-cell compression. Additionally, two functional units were integrated in one chip for carrying out mechanosensation study in parallel, where HL60 cells (leukemic cells) and Jurkat cells (lymphocytes) were shown to respond to mechanical stimulation with different kinetics. The results demonstrated that the microfluidic device provides a novel approach to investigating the mechanosensation of single suspension cells in high-throughput. © 2013 The Royal Society of Chemistry.

Citation Format(s)