Micro Many-Objective Evolutionary Algorithm With Knowledge Transfer

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Number of pages14
Journal / PublicationIEEE Transactions on Emerging Topics in Computational Intelligence
Online published9 Sept 2024
Publication statusOnline published - 9 Sept 2024

Abstract

Computational effectiveness and limited resources in evolutionary algorithms are interdependently handled during the working of low-power microprocessors for real-world problems, particularly in many-objective evolutionary algorithms (MaOEAs). In this respect, the balance between them will be broken by evolutionary algorithms with a normal-sized population, but which doesn't include a micro population. To tackle this issue, this paper proposes a micro many-objective evolutionary algorithm with knowledge transfer (μMaOEA). To address the oversight that knowledge is often not considered enough between niches, the knowledge-transfer strategy is proposed to bolster each unoptimized niche through optimizing adjacent niches, which enables niches to generate better individuals. Meanwhile, a two-stage mechanism based on fuzzy logic is designed to settle the conflict between convergence and diversity in many-objective optimization problems. Through efficient fuzzy logic decision-making, the mechanism maintains different properties of the population at different stages. Different MaOEAs and micro multi-objective evolutionary algorithms were compared on benchmark test problems DTLZ, MaF, and WFG, and the results showed that μMaOEA has an excellent performance. In addition, it also conducted simulation on two real-world problems, MPDMP and MLDMP, based on a low-power microprocessor. The results indicated the applicability of μMaOEA for low-power microprocessor optimization. © 2024 IEEE.

Research Area(s)

  • Optimization, Evolutionary computation, Knowledge transfer, Vectors, Convergence, Microprocessors, Fuzzy logic, Micro many-objective evolutionary algorithm, many-objective optimization problems, knowledge transfer, low-power microprocessors