Metal-Solid Interactions Controlling the Bioavailability of Mercury from Sediments to Clams and Sipunculans

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

41 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)3794-3799
Journal / PublicationEnvironmental Science and Technology
Issue number12
Online published12 May 2006
Publication statusPublished - 1 Jun 2006
Externally publishedYes


The bioavailability of sedimentary Hg(II) and methylmercury (MeHg) was quantified by measuring the assimilation efficiency (AE) in the clam Ruditapes philippinarum and the extraction of the gut juices from the sipunculan Sipunculus nudus. Three factors (Hg concentration in sediment, Hg sediment contact time, and organic content of sediments) were modified to examine metal-solid interactions in controlling Hg bioavailability. The Hg AEs in the clams were strongly correlated with the extraction from the sipunculan gut juices for both Hg species. The bioavailability of both Hg(II) and MeHg generally increased with increased sediment Hg concentration but decreased with sediment-metal contact time and increasing organic content (except that MeHg was not influenced by organic content). Hg-(II) speciation in sediments, quantified by sequential chemical extraction (SCE), was dependent on geochemical conditions and greatly controlled the mobility and bioavailability of Hg(II) in sediments. Most bioavailable Hg-(II) originated from the strongly complexed phase (e.g., Hg bound up in Fe/Mn oxide, amorphous organosulfur, or mineral lattice), whereas Hg bound with the organocomplexed phase (Hg humic and Hg 2Cl2) was not bioavailable. Hg bound with the other geochemical phases (water soluble, HgO, HgSO4, and HgS) contributed very little to the bioavailable Hg due to their low partitionings. Further, the amount of bioavailable Hg was inversely related to the particle reactivity of Hg with the sediments. Detailed analyses of metal-solid interactions provide a better understanding of how Hg in sediments can predict Hg concentration and therefore bioavailability in benthic invertebrates. © 2006 American Chemical Society.