Mesh stiffness calculation of defective gear system under lubrication with automated assessment of surface defects using convolutional neural networks

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number111445
Journal / PublicationMechanical Systems and Signal Processing
Volume216
Online published29 Apr 2024
Publication statusPublished - 1 Jul 2024

Abstract

As typical failure mode of gear system, the tooth surface pitting, spalling can be detected in most long-running gear system, especially under heavy-load and high-speed condition, or under lubricant-starvation condition, the tooth pitting is characterized by irregular contour and random distribution. Most previous study on the defective gear system mainly based on manually detection of defective region, or just rely on geometric simplification of defects, leading to inaccurate results with low-efficient method, therefore, the machine-vision-based defect inspection method is proposed in the study of defective gear system. First, the pitting defects on gear tooth surface is detected and segmented based on involutional neural network U-net, then the tooth surface with segmented defective region is mapped to the elastohydrodynamic lubrication model of spur gear system, finally, the tribological behavior in addition to the mesh stiffness under lubrication condition of defective spur gear system are investigated and discussed. The results reveal that the machine-vision-based defects inspection could improve the accuracy and efficiency of the failure study for gear system.
© 2024 Elsevier Ltd. All rights reserved.

Research Area(s)

  • Deep learning, Defect detection, Gear lubrication, Machine vision inspection, Mesh stiffness

Citation Format(s)