MEMS accelerometer based nonspecific-user hand gesture recognition

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

213 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number6009159
Pages (from-to)1166-1173
Journal / PublicationIEEE Sensors Journal
Volume12
Issue number5
Publication statusPublished - 2012
Externally publishedYes

Abstract

This paper presents three different gesture recognition models which are capable of recognizing seven hand gestures, i.e., up, down, left, right, tick, circle, and cross, based on the input signals from MEMS 3-axes accelerometers. The accelerations of a hand in motion in three perpendicular directions are detected by three accelerometers respectively and transmitted to a PC via Bluetooth wireless protocol. An automatic gesture segmentation algorithm is developed to identify individual gestures in a sequence. To compress data and to minimize the influence of variations resulted from gestures made by different users, a basic feature based on sign sequence of gesture acceleration is extracted. This method reduces hundreds of data values of a single gesture to a gesture code of 8 numbers. Finally, the gesture is recognized by comparing the gesture code with the stored templates. Results based on 72 experiments, each containing a sequence of hand gestures (totaling 628 gestures), show that the best of the three models discussed in this paper achieves an overall recognition accuracy of 95.6%, with the correct recognition accuracy of each gesture ranging from 91% to 100%. We conclude that a recognition algorithm based on sign sequence and template matching as presented in this paper can be used for nonspecific-users hand-gesture recognition without the time consuming user-training process prior to gesture recognition. © 2012 IEEE.

Research Area(s)

  • Gesture recognition, interactive controller, MEMS accelerometer

Citation Format(s)

MEMS accelerometer based nonspecific-user hand gesture recognition. / Xu, Ruize; Zhou, Shengli; Li, Wen J.
In: IEEE Sensors Journal, Vol. 12, No. 5, 6009159, 2012, p. 1166-1173.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review