Medium-sized Au40(SR)24 and Au52(SR)32 nanoclusters with distinct gold-kernel structures and spectroscopic features
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1299-1304 |
Journal / Publication | Nanoscale |
Volume | 8 |
Issue number | 3 |
Publication status | Published - 21 Jan 2016 |
Externally published | Yes |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-84954171442&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(312b19f4-2c8b-480b-bedc-4d5e8ada520c).html |
Abstract
We have analyzed the structures of two medium-sized thiolate-protected gold nanoparticles (RS-AuNPs) Au40(SR)24 and Au52(SR)32 and identified the distinct structural features in their Au kernels [Sci. Adv., 2015, 1, e1500425]. We find that both Au kernels of the Au40(SR)24 and Au52(SR)32 nanoclusters can be classified as interpenetrating cuboctahedra. Simulated X-ray diffraction patterns of the RS-AuNPs with the cuboctahedral kernel are collected and then compared with the X-ray diffraction patterns of the RS-AuNPs of two other prevailing Au-kernels identified from previous experiments, namely the Ino-decahedral kernel and icosahedral kernel. The distinct X-ray diffraction patterns of RS-AuNPs with the three different types of Au-kernels can be utilized as signature features for future studies of structures of RS-AuNPs. Moreover, the simulated UV/Vis absorption spectra and Kohn-Sham orbital energy-level diagrams are obtained for the Au40(SR)24 and Au52(SR)32, on the basis of time-dependent density functional theory computation. The extrapolated optical band-edges of Au40(SR)24 and Au52(SR)32 are 1.1 eV and 1.25 eV, respectively. The feature peaks in the UV/Vis absorption spectra of the two clusters can be attributed to the d → sp electronic transition. Lastly, the catalytic activities of the Au40(SR)24 and Au52(SR)32 are examined using CO oxidation as a probe. Both medium-sized thiolate-protected gold clusters can serve as effective stand-alone nanocatalysts.
Research Area(s)
Bibliographic Note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.
Citation Format(s)
Medium-sized Au40(SR)24 and Au52(SR)32 nanoclusters with distinct gold-kernel structures and spectroscopic features. / Xu, Wen Wu; Li, Yadong; Gao, Yi et al.
In: Nanoscale, Vol. 8, No. 3, 21.01.2016, p. 1299-1304.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Download Statistics
No data available