Mechanistic aspects of fracture and R-curve behavior in human cortical bone

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

260 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)217-231
Journal / PublicationBiomaterials
Volume26
Issue number2
Online published10 Mar 2004
Publication statusPublished - Jan 2005
Externally publishedYes

Abstract

An understanding of the evolution of toughness is essential for the mechanistic interpretation of the fracture of cortical bone. In the present study, in vitro fracture experiments were conducted on human cortical bone in order to identify and quantitatively assess the salient toughening mechanisms. The fracture toughness was found to rise linearly with crack extension (i.e., rising resistance- or R-curve behavior) with a mean crack-initiation toughness, K0 of ∼2MPa√m for crack growth in the proximal-distal direction. Uncracked ligament bridging, which was observed in the wake of the crack, was identified as the dominant toughening mechanism responsible for the observed R-curve behavior. The extent and nature of the bridging zone was examined quantitatively using multi-cutting compliance experiments in order to assess the bridging zone length and estimate the bridging stress distribution. Additionally, time-dependent cracking behavior was observed at stress intensities well below those required for overload fracture; specifically, slow crack growth occurred at growth rates of ∼2 × 10-9 m/s at stress intensities ∼35% below the crack-initiation toughness. In an attempt to measure slower growth rates, it was found that the behavior switched to a regime dominated by time-dependent crack blunting, similar to that reported for dentin; however, such blunting was apparent over much slower time scales in bone, which permitted subcritical crack growth to readily take place at higher stress intensities. © 2004 Elsevier Ltd. All rights reserved.

Research Area(s)

  • Bone, Bridging, Fracture, Microcracking, R-curve, Tomography, Toughening

Citation Format(s)

Mechanistic aspects of fracture and R-curve behavior in human cortical bone. / Nalla, R.K.; Kruzic, J.J.; Kinney, J.H.; Ritchie, R.O.

In: Biomaterials, Vol. 26, No. 2, 01.2005, p. 217-231.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal