Mapping FrameNet and SUMO with WordNet verb: Statistical distribution of lexical-ontological realization

Ian C. Chow, Jonathan J. Webster

Research output: Chapters, Conference Papers, Creative and Literary WorksRGC 32 - Refereed conference paper (with host publication)peer-review

6 Citations (Scopus)

Abstract

Automatic acquisition of lexical knowledge is critical to a wide range of natural language processing tasks. Verb knowledge is especially important in semantic parsing. Verbs denote relational information of lexicogrammar and semantically state the participants and event involved in the meaning construed. This paper describes a statistical distribution approach to reuse and integrate information from the Suggested Upper Merged Ontology (SUMO), WordNet and FrameNet. The mapping between word-meanings, frame-semantics and world concepts suggests a heuristic approach for linking WordNet verbs and FrameNet frames providing a knowledge base for Semantic Role Labeling(SRL), identifying the appropriate range of possible semantic roles with respect to the event evoked by verb. This is accomplished through the verbs covered by both FrameNet and WordNet, taking the shared lexical knowledge as learning data to map SUMO concepts with FrameNet frames. The exploitation of the mapping aims at automatic populating WordNet data to FrameNet frames constructing a knowledge base for semantic parsing. © 2006 IEEE.
Original languageEnglish
Title of host publicationProceedings - Fifth Mexican International Conference on Artificial Intelligence, MICAI 2006
Pages262-268
DOIs
Publication statusPublished - 2006
Event5th Mexican International Conference on Artificial Intelligence, MICAI 2006 - Apizaco, Mexico
Duration: 13 Nov 200617 Nov 2006

Conference

Conference5th Mexican International Conference on Artificial Intelligence, MICAI 2006
Country/TerritoryMexico
CityApizaco
Period13/11/0617/11/06

Fingerprint

Dive into the research topics of 'Mapping FrameNet and SUMO with WordNet verb: Statistical distribution of lexical-ontological realization'. Together they form a unique fingerprint.

Cite this