Manage Inventories with Learning on Demands and Buy-up Substitution Probability
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Journal / Publication | Manufacturing and Service Operations Management |
Online published | 8 Dec 2022 |
Publication status | Online published - 8 Dec 2022 |
Link(s)
DOI | DOI |
---|---|
Document Link | |
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85154538381&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(a4fc9358-d790-4107-96eb-eadb7d08d159).html |
Abstract
Problem Definition: This paper considers a setting in which an airline company sells seats periodically, and each period consists of two selling phases, an early-bird discount phase and a regular-price phase. In each period, when the early-bird discount seat is stocked out, an early-bird customer who comes for the discounted seat either purchases the regular-price seat as a substitute (called buy-up substitution) or simply leaves. Methodology/ Results: The optimal inventory level of the discounted seats reserved for the early-bird sale is a critical decision for the airline company to maximize its revenue. The airline company learns about the demands for both discounted and regular-price seats and the buy up substitution probability from historical sales data, which, in turn, are affected by past inventory allocation decisions. In this paper, we investigate two information scenarios based on whether lost sales are observable, and we provide the corresponding Bayesian updating mechanism for learning about demand parameters and substitution probability. We then construct a dynamic programming model to derive the Bayesian optimal inventory level decisions in a multiperiod setting. The literature finds that the unobservability of lost sales drives the inventory manager to stock more (i.e., the Bayesian optimal inventory level should be kept higher than the myopic inventory level) to observe and learn more about demand distributions. Here, we show that when the buy-up substitution probability is known, one may stock less, because one can infer some information about the primary demand for the discounted seat from the customer substitution behavior. We also find that to learn about the unknown buy-up substitution probability drives the inventory manager to stock less so as to induce more substitution trials. Finally, we develop a SoftMax algorithm to solve our dynamic programming problem. We show that the obtained stock more (less) result can be utilized to speed up the convergence of the algorithm to the optimal solution. Managerial Implications: Our results shed light on the airline seat protection level decision with learning about demand parameters and buy-up substitution probability. Compared with myopic optimization, Bayesian inventory decisions that consider the exploration-exploitation tradeoff can avoid getting stuck in local optima and improve the revenue. We also identify new driving forces behind the stock more (less) result that complement the Bayesian inventory management literature.
© 2022 INFORMS
© 2022 INFORMS
Research Area(s)
- airline seat allocation, early-bird discount, Bayesian inventory management, newsvendor model, SoftMax algorithm, REVENUE MANAGEMENT, CENSORED NEWSVENDOR, OPTIMAL ACQUISITION, POLICIES, MODELS, OPTIMIZATION, ALLOCATION, CHOICE
Citation Format(s)
Manage Inventories with Learning on Demands and Buy-up Substitution Probability. / Luo, Zhenwei; Guo, Pengfei; Wang, Yulan.
In: Manufacturing and Service Operations Management, 08.12.2022.
In: Manufacturing and Service Operations Management, 08.12.2022.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review