Magnetically Driven Undulatory Microswimmers Integrating Multiple Rigid Segments

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

1 Scopus Citations
View graph of relations


Related Research Unit(s)


Original languageEnglish
Article number1901197
Journal / PublicationSmall
Issue number36
Online published17 Jul 2019
Publication statusPublished - 4 Sep 2019


Mimicking biological locomotion strategies offers important possibilities and motivations for robot design and control methods. Among bioinspired microrobots, flexible microrobots exhibit remarkable efficiency and agility. These microrobots traditionally rely on soft material components to achieve undulatory propulsion, which may encounter challenges in design and manufacture including the complex fabrication processes and the interfacing of rigid and soft components. Herein, a bioinspired magnetically driven microswimmer that mimics the undulatory propulsive mechanism is proposed. The designed microswimmer consists of four rigid segments, and each segment is connected to the succeeding segment by joints. The microswimmer is fabricated integrally by 3D laser lithography without further assembly, thereby simplifying microrobot fabrication while enhancing structural integrity. Experimental results show that the microswimmer can successfully swim forward along guided directions via undulatory locomotion in the low Reynolds number (Re) regime. This work demonstrates for the first time that the flexible characteristic of microswimmers can be emulated by 3D structures with multiple rigid segments, which broadens possibilities in microrobot design. The proposed magnetically driven microswimmer can potentially be used in biomedical applications, such as medical diagnosis and treatment in precision medicine.

Research Area(s)

  • 3D laser lithography, bioinspired robots, magnetically driven, microswimmers, multiple segments