TY - JOUR
T1 - Luminescent Iridium(III) Complexes Supported by N-Heterocyclic Carbene-based C^C^C-Pincer Ligands and Aromatic Diimines
AU - Chung, Lai-Hon
AU - Lo, Hoi-Shing
AU - Ng, Sze-Wing
AU - Ma, Dik-Lung
AU - Leung, Chung-Hang
AU - Wong, Chun-Yuen
PY - 2015/10/21
Y1 - 2015/10/21
N2 - Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene) phenyl anion (C2^C^C2) and aromatic diimine (2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir-CNHC distances are 2.043(5)-2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (-20.6 to-20.3 ppm) are more upfield than those with C2^C^C2 (-19.5 and-19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and timedependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340-530 nm (∈ ≤ 103 dm3 mol-1 cm-1)) originate from a dπ(IrIII) → π∗(N^N) metal-to-ligand charge transfer transition, where the dp(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellowspectral region (553-604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10-3-10-1.
AB - Iridium(III) hydrido complexes containing N-heterocyclic carbene (NHC)-based pincer ligand 1,3-bis(1-butylimidazolin-2-ylidene)phenyl anion (C1^C^C1) or 1,3-bis(3-butylbenzimidazolin-2-ylidene) phenyl anion (C2^C^C2) and aromatic diimine (2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq)) in the form of [Ir(C^C^C)(N^N)(H)]+ have been prepared. Crystal structures for these complexes show that the Ir-CNHC distances are 2.043(5)-2.056(5) Å. The hydride chemical shifts for complexes bearing C1^C^C1 (-20.6 to-20.3 ppm) are more upfield than those with C2^C^C2 (-19.5 and-19.2 ppm), revealing that C1^C^C1 is a better electron donor than C2^C^C2. Spectroscopic comparisons and timedependent density functional theory (TD-DFT) calculations suggest that the lowest-energy electronic transition associated with these complexes (λ = 340-530 nm (∈ ≤ 103 dm3 mol-1 cm-1)) originate from a dπ(IrIII) → π∗(N^N) metal-to-ligand charge transfer transition, where the dp(IrIII) level contain significant contribution from the C^C^C ligands. All these complexes are emissive in the yellowspectral region (553-604 nm in CH3CN and CH2Cl2) upon photo-excitation with quantum yields of 10-3-10-1.
UR - http://www.scopus.com/inward/record.url?scp=84944909820&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-84944909820&origin=recordpage
U2 - 10.1038/srep15394
DO - 10.1038/srep15394
M3 - RGC 21 - Publication in refereed journal
C2 - 26487542
SN - 2045-2322
VL - 5
JO - Scientific Reports
JF - Scientific Reports
M1 - 15394
ER -