Low-temperature diffusion of dopant atoms in silicon during interfacial silicide formation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

67 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)2010-2020
Journal / PublicationPhysical Review B
Issue number4
Publication statusPublished - 1984
Externally publishedYes


It has been recently reported that the formation of transition-metal silicides induces a strong enhancement of dopant diffusion in silicon at low temperatures (250°C). However, the mechanism which is responsible for the enhanced diffusion has not been addressed. We have undertaken a systematic study to clarify the mechanism. Our results show that diffusion enhancement occurs only as a result of advancing silicide-silicon interfaces. We also find that diffusion enhancement is a unique feature of the interfacial formation of near-noble-metal silicides, but not refractory-metal silicides. By correlating these observations with the interstitial diffusion of near-noble-metal atoms in silicon, we propose that during silicide formation a large number of point defects is generated in the silicon near the silicide-silicon interface, and that these point defects are responsible for the enhanced diffusivity of substitutional dopants at low temperatures. © 1984 The American Physical Society.

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.