Long-term target tracking combined with re-detection

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

4 Scopus Citations
View graph of relations

Author(s)

  • Juanjuan Wang
  • Haoran Yang
  • Ning Xu
  • Chengqin Wu
  • Zengshun Zhao
  • Jixiang Zhang

Detail(s)

Original languageEnglish
Article number2
Journal / PublicationEurasip Journal on Advances in Signal Processing
Volume2021
Online published6 Jan 2021
Publication statusPublished - 2021
Externally publishedYes

Link(s)

Abstract

Long-term visual tracking undergoes more challenges and is closer to realistic applications than short-term tracking. However, the performances of most existing methods have been limited in the long-term tracking tasks. In this work, we present a reliable yet simple long-term tracking method, which extends the state-of-the-art learning adaptive discriminative correlation filters (LADCF) tracking algorithm with a re-detection component based on the support vector machine (SVM) model. The LADCF tracking algorithm localizes the target in each frame, and the re-detector is able to efficiently re-detect the target in the whole image when the tracking fails. We further introduce a robust confidence degree evaluation criterion that combines the maximum response criterion and the average peak-to-correlation energy (APCE) to judge the confidence level of the predicted target. When the confidence degree is generally high, the SVM is updated accordingly. If the confidence drops sharply, the SVM re-detects the target. We perform extensive experiments on the OTB-2015 and UAV123 datasets. The experimental results demonstrate the effectiveness of our algorithm in long-term tracking.

Research Area(s)

  • Learning adaptive discriminative correlation filters, Long-term tracking, Re-detection

Citation Format(s)

Long-term target tracking combined with re-detection. / Wang, Juanjuan; Yang, Haoran; Xu, Ning et al.

In: Eurasip Journal on Advances in Signal Processing, Vol. 2021, 2, 2021.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

Download Statistics

No data available