Linear complementarity solution of 2D boundary slip EHL contact

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

5 Scopus Citations
View graph of relations


Related Research Unit(s)


Original languageEnglish
Article number106178
Journal / PublicationTribology International
Online published13 Jan 2020
Publication statusPublished - May 2020


Recent researches proved that bearing friction can be largely reduced with an oleophilic (no-slip) surface sliding against an oleophobic (slip) surface. The present work investigates the applicability of the slip/no-slip concept to 2D elastohydrodynamic lubrication (EHL) problems. Numerical analysis of isothermal EHL point contact is conducted under pure rolling conditions with the critical shear stress slip model. The challenge of determining the slip direction upon the attainment of the critical shear stress value in 2D problems is resolved by using a linear complementarity principle. The effect of boundary slip on bearing performance in terms of film thickness and friction is evaluated.

Research Area(s)

  • Boundary slip, Critical shear stress, Elastohydrodynamic lubrication, Linear complementarity principle

Citation Format(s)