Learning from Web Recipe-image Pairs for Food Recognition : Problem, Baselines and Performance
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1175-1185 |
Number of pages | 11 |
Journal / Publication | IEEE Transactions on Multimedia |
Volume | 24 |
Online published | 29 Oct 2021 |
Publication status | Published - 2022 |
Link(s)
Abstract
Cross-modal recipe retrieval has recently been explored for food recognition and understanding. Text-rich recipe provides not only visual content information (e.g., ingredients, dish presentation) but also procedure of food preparation (cutting and cooking styles). The paired data is leveraged to train deep models to retrieve recipes for food images. Most recipes on the Web include sample pictures as the references. The paired multimedia data is not noise-free, due to errors such as pairing of images containing partially prepared dishes with recipes. The content of recipes and food images are not always consistent due to free-style writing and preparation of food in different environments. As a consequence, the effectiveness of learning cross-modal deep models from such noisy web data is questionable. This paper conducts an empirical study to provide insights whether the features learnt with noisy pair data are resilient and could capture the modality correspondence between visual and text.
Research Area(s)
- Context modeling, Data models, Feature extraction, Food recognition, Generative adversarial networks, Image recognition, image-to-image retrieval, image-to-recipe retrieval, Training, Visualization
Citation Format(s)
Learning from Web Recipe-image Pairs for Food Recognition : Problem, Baselines and Performance. / Zhu, Bin; Ngo, Chong-Wah; Chan, Wing-Kwong.
In: IEEE Transactions on Multimedia, Vol. 24, 2022, p. 1175-1185.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review