Lattice Structures Made From Surface-Modified Steel Sheets

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

1 Scopus Citations
View graph of relations



Original languageEnglish
Article number11007
Journal / PublicationJournal of Applied Mechanics, Transactions ASME
Issue number1
Publication statusPublished - 1 Jan 2015


Nanostructured materials produced by surface mechanical attrition treatment (SMAT) method are explored for two periodic lattice topologies: square and Kagome. Selected SMAT strategies are applied to bar members in the unit cell of each topology considered. The maximum axial stress in these bars is calculated as a function of the macroscopic in-plane principal stresses. A simple yield criterion is used to determine the elastic limit of the lattice with each SMAT strategy, and the relative merits of the competing strategies are discussed in terms of the reinforced yield strength and the SMAT efficiency. Experiments of selected SMAT strategies on both square and Kagome lattices made from stainless steel sheets are performed to assess the analytical predictions for the loading case of uniaxial tension.

Research Area(s)

  • lattices, nanostructured materials, surface mechanical attrition treatment, uniaxial tension, yield stress