“Lattice Strain Matching”-Enabled Nanocomposite Design to Harness the Exceptional Mechanical Properties of Nanomaterials in Bulk Forms

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

20 Scopus Citations
View graph of relations

Author(s)

  • Junsong Zhang
  • Yinong Liu
  • Lishan Cui
  • Shijie Hao
  • Daqiang Jiang
  • Kaiyuan Yu
  • Shengcheng Mao
  • Hong Yang

Detail(s)

Original languageEnglish
Article number1904387
Journal / PublicationAdvanced Materials
Volume32
Issue number18
Online published19 Sept 2019
Publication statusPublished - 7 May 2020
Externally publishedYes

Abstract

Nanosized materials are known to have the ability to withstand ultralarge elastic strains (4–10%) and to have ultrahigh strengths approaching their theoretical limits. However, it is a long-standing challenge to harnessing their exceptional intrinsic mechanical properties in bulk forms. This is commonly known as “the valley of death” in nanocomposite design. In 2013, a breakthrough was made to overcome this challenge by using a martensitic phase transforming matrix to create a composite in which ultralarge elastic lattice strains up to 6.7% are achieved in Nb nanoribbons embedded in it. This breakthrough was enabled by a novel concept of phase transformation assisted lattice strain matching between the uniform ultralarge elastic strains (4–10%) of nanomaterials and the uniform crystallographic lattice distortion strains (4–10%) of the martensitic phase transformation of the matrix. This novel concept has opened new opportunities for developing materials of exceptional mechanical properties or enhanced functional properties that are not possible before. The work in progress in this research over the past six years is reported.

Research Area(s)

  • elastic strain, martensitic transformation, nanocomposites, shape–memory alloys

Citation Format(s)

“Lattice Strain Matching”-Enabled Nanocomposite Design to Harness the Exceptional Mechanical Properties of Nanomaterials in Bulk Forms. / Zhang, Junsong; Liu, Yinong; Cui, Lishan et al.
In: Advanced Materials, Vol. 32, No. 18, 1904387, 07.05.2020.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review