L1 stability estimates for n x n conservation laws
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1-22 |
Journal / Publication | Archive for Rational Mechanics and Analysis |
Volume | 149 |
Issue number | 1 |
Publication status | Published - 22 Oct 1999 |
Link(s)
Abstract
Let ut + f(u)x = 0 be a strictly hyperbolic n x n system of conservation laws, each characteristic field being linearly degenerate or genuinely nonlinear. In this paper we explicitly define a functional Φ = Φ(u, v), equivalent to the L1 distance, which is "almost decreasing" i.e., Φ(u(t), v(t)) - Φ(u(s), v(s)) ≦ O (ε) · (t - s) for all t > s ≧ 0, for every pair of ε-approximate solutions u, v with small total variation, generated by a wave front tracking algorithm. The small parameter ε here controls the errors in the wave speeds, the maximum size of rarefaction fronts and the total strength of all non-physical waves in u and in v. From the above estimate, it follows that front-tracking approximations converge to a unique limit solution, depending Lipschitz continuously on the initial data, in the L1 norm. This provides a new proof of the existence of the standard Riemann semigroup generated by a n x n system of conservation laws.
Citation Format(s)
L1 stability estimates for n x n conservation laws. / BRESSAN, Alberto; LIU, Tai-Ping; YANG, Tong.
In: Archive for Rational Mechanics and Analysis, Vol. 149, No. 1, 22.10.1999, p. 1-22.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review