Kinetically Controlled Assembly of a Spirocyclic Aromatic Hydrocarbon into Polyhedral Micro/Nanocrystals
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 5309-5319 |
Journal / Publication | ACS Nano |
Volume | 6 |
Issue number | 6 |
Online published | 10 May 2012 |
Publication status | Published - 26 Jun 2012 |
Externally published | Yes |
Link(s)
Abstract
Nonplane molecules with multiple large aromatic planes could be promising candidates to form various polyhedral micro/nanocrystals by manipulating the different π⋯π stacking, tuning the cohesive energies of crystal facets, and controlling the kinetic growth process. Spirocyclic aromatic hydrocarbons (SAHs) not only have two cross-shaped aromatic planes but also offer the feature of supramolecular steric hindrance, making it favorable for the heterogeneous kinetic growth into highly symmetric polyhedra. Herein, we report that a novel SAH compound, spiro[fluorene-9,7′- dibenzo[c,h]acridine]-5′-one (SFDBAO), can self-assemble into various monodispersed shapes such as hexahedra, octahedra, and decahedra through the variation of either different types of surfactants, such as Pluronic 123 (P123) and cetyltrimethyl ammonium bromide (CTAB), or growth parameters. In addition, the possible mechanism of crystal facet growth has been proposed according to the SEM, XRD, TEM, and SAED characterization of organic polyhedral micro/nanocrystals. The unique cruciform-shaped SAHs have been demonstrated as fascinating supramolecular synthons for various highly symmetric polyhedral assembling.
Research Area(s)
- cruciform-shaped molecules, kinetic crystal growth, polyhedron, spirocyclic aromatic hydrocarbon, supramolecular assembly, surfactant
Citation Format(s)
Kinetically Controlled Assembly of a Spirocyclic Aromatic Hydrocarbon into Polyhedral Micro/Nanocrystals. / Lin, Zong-Qiong; Sun, Peng-Ju; Tay, Yee-Yan et al.
In: ACS Nano, Vol. 6, No. 6, 26.06.2012, p. 5309-5319.
In: ACS Nano, Vol. 6, No. 6, 26.06.2012, p. 5309-5319.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review