Invited Article : High-pressure techniques for condensed matter physics at low temperature

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

40 Scopus Citations
View graph of relations

Author(s)

  • Yejun Feng
  • R. Jaramillo
  • Jiyang Wang
  • Yang Ren
  • T. F. Rosenbaum

Detail(s)

Original languageEnglish
Article number041301
Journal / PublicationReview of Scientific Instruments
Volume81
Issue number4
Publication statusPublished - Apr 2010
Externally publishedYes

Abstract

Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent ΔP/P per unit area of ±1.8 %/(104 μm2) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021±0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium. © 2010 American Institute of Physics.

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.

Citation Format(s)

Invited Article : High-pressure techniques for condensed matter physics at low temperature. / Feng, Yejun; Jaramillo, R.; Wang, Jiyang; Ren, Yang; Rosenbaum, T. F.

In: Review of Scientific Instruments, Vol. 81, No. 4, 041301, 04.2010.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review