Intracellular uptake of poly(ethylene glycol) and folic acid modified magnetite nanoparticles

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Journal / PublicationMaterials Research Society Symposium - Proceedings
Volume676
Publication statusPublished - 2001
Externally publishedYes

Conference

TitleSynthesis, Functional Properties and Applications of Nanostructures
PlaceUnited States
CitySan Francisco, CA
Period17 - 20 April 2001

Abstract

Superparamagnetic magnetite nanoparticles were surface-modified with poly(ethylene glycol) (PEG) or folic acid, to resist the protein adsorption and avoid their recognition by macrophage cells, and to improve their cell internalization and ability to target specific cells. The nanoparticle uptake into human osteosarcoma cells, MG63, was visualized using both fluorescence and confocal microscopy, and quantified using inductively coupled plasma emission spectroscopy (ICP) measurement. Fluorescence and confocal microscopy results showed that the nanoparticles were internalized into the cells after the cells were cultured for 48h in the medium containing the nanoparticles modified with PEG or folic acid. ICP measurements indicated that both the PEG and folic acid modification increased the amount of the nanoparticle uptake into the cells, in comparison with that of unmodified nanoparticles.

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].