Inter-species differences of total mercury and methylmercury in farmed fish in Southern China : Does feed matter?

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

14 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1857-1866
Journal / PublicationScience of the Total Environment
Volume651
Online published9 Oct 2018
Publication statusPublished - 15 Feb 2019
Externally publishedYes

Abstract

China is now the largest producer of marine farmed fish and there is a considerable concern of seafood safety due to potential mercury contamination. We analyzed both the total mercury (THg) and methylmercury (MeHg) concentrations in nine species of commercial fish from two marine-cage farms in Southern China. 13C and 15N stable isotopes were concurrently analyzed to identify the artificial feed sources and the trophic levels of farmed fish. Mercury concentrations of all species were much lower than the human health screening values and safety limits established by different countries. Mercury levels in artificial pellets were the main determinants of Hg accumulation in fish between two sites, while somatic growth dilution and size also played an important role. Among the different fish tissues, muscle was a major reservoir for Hg and contained the highest ratio of MeHg/THg, and liver was the second important organ for Hg accumulation in most fish species. Intestine was a critical organ for Hg biotransformation with its %MeHg differing greatly among different fish species. δ15N analysis could not be used to determine the trophic levels in culturing systems where artificial practices were involved. Based on the δ13C signatures, five species of fish were identified to solely feed on the artificial pellets, yet the Hg bioaccumulation differed significantly among these species. We therefore concluded that Hg bioaccumulation in different fish species may be dependent on their internal Hg biotransformation as well as their biokinetics.

Research Area(s)

  • Artificial diets, Biomagnification, Farmed fish, Mercury, Southern China