Interrogation of fiber-Bragg-grating sensors using dual-wavelength pulses generated from a self-seeded Fabry-Perot laser diode

Yunqi Liu, Kin Seng Chiang, Pak Lim Chu

Research output: Journal Publications and ReviewsRGC 22 - Publication in policy or professional journal

Abstract

We present a simple technique for the interrogation of fiber Bragg grating (FBG) sensors using a self-seeded Fabry-Perot laser diode (FP-LD). The FBG sensor is configured in such a way that its reflection spectrum consists of two peaks, whose separation depends on the physical parameter to be measured. When the modulating frequency of the FP-LD is set properly, stable short pulses at the two wavelengths selected from the same FP-LD mode with the FBG are generated simultaneously. The wavelength separation of the dual-wavelength pulses is converted into a time difference by transmitting the pulses through a dispersive fiber. In this way, accurate wavelength measurement is replaced by the less expensive time measurement. To multiplex similar sensors that are sufficiently far apart spectrally, it is only necessary to change the modulating frequency of the FP-LD. To balance the pulse intensities at the two wavelengths for a particular sensor, the temperature of the FP-LD can be adjusted. Using this technique, we demonstrated experimentally a number of FBG-based sensors, including displacement/bending sensors, temperature-compensated current sensors, and transverse force sensors. This technique provides an intensity-referencing- free demodulation scheme, an easy way to interrogate a series of sensors, and an effective means to overcome drifts.
Original languageEnglish
Article number4
Pages (from-to)27-38
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume5634
Issue numberPART 1
DOIs
Publication statusPublished - 2005
EventAdvanced Sensor Systems and Applications II - Beijing, China
Duration: 8 Nov 200412 Nov 2004

Research Keywords

  • Dual-wavelength pulse laser
  • Fiber Bragg grating
  • Fiber optic sensor
  • Multiplexing
  • Temperature compensation

Fingerprint

Dive into the research topics of 'Interrogation of fiber-Bragg-grating sensors using dual-wavelength pulses generated from a self-seeded Fabry-Perot laser diode'. Together they form a unique fingerprint.

Cite this