Intermittent boundary control for fixed-time stability of reaction–diffusion systems

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number114704
Number of pages8
Journal / PublicationChaos, Solitons and Fractals
Volume181
Online published8 Mar 2024
Publication statusPublished - Apr 2024

Abstract

This work is a pilot effort to investigate the fixed-time stability (FxTS) of reaction–diffusion systems under aperiodically intermittent boundary control (AIBC). The average control rate and a new Lyapunov function are proposed to overcome the challenges of handling the FxTS of reaction–diffusion systems with AIBC. Moreover, the proposed method is applicable to the study of finite-time stability and exponential stability of reaction–diffusion systems under AIBC. Based on the Wirtinger's inequality and the Lyapunov method, a FxTS criterion for a reaction–diffusion system with AIBC is given. Finally, two examples are discussed along with the simulated results to verify the effectiveness of the proposed method. © 2024 Elsevier Ltd

Research Area(s)

  • Aperiodically intermittent boundary control, Average control rate, Fixed-time stability, Reaction–diffusion system