Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO3 films

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

31 Scopus Citations
View graph of relations

Author(s)

  • Youdi Gu
  • Yi-Wen Wei
  • Kun Xu
  • Hongrui Zhang
  • Fei Wang
  • Fan Li
  • Muhammad Shahrukh Saleem
  • Cui-Zu Chang
  • Jirong Sun
  • Cheng Song
  • Ji Feng
  • Wei Liu
  • Zhidong Zhang
  • Jing Zhu
  • Feng Pan

Detail(s)

Original languageEnglish
Article number404001
Journal / PublicationJournal of Physics D: Applied Physics
Volume52
Issue number40
Online published25 Jul 2019
Publication statusPublished - 2 Oct 2019
Externally publishedYes

Abstract

Topological spin textures as an emerging class of topological matter offer a medium for information storage and processing. The recently discovered topological Hall effect (THE) is considered as a fingerprint for electrically probing the Dzyaloshinskii-Moriya (DM) interaction and corresponding non-trivial spin-textures. In this paper, the THE and its electrical control are observed in ultrathin (8 unit cells. u.c.) 4D ferromagnetic SrRuO3 films grown on SrTiO3(0 0 1) substrates, indicating the existence of gate-bias-tunable DM interaction in the single SrRuO3 layer without contacting 5D oxide SrIrO3 layer. High-resolution lattice structure analysis revealed that the interfacial RuO6 octahedral tilting induced by local orthorhombic-to-tetragonal structural phase transition exists across the SrRuO3/SrTiO3 interface, which naturally breaks the inversion symmetry. Our theoretical calculations demonstrate that the DM interaction arises owing to the broken inversion symmetry and strong spin-orbit interaction of 4D SrRuO3. This interfacial RuO6 octahedral tilting-induced DM interaction can stabilize the Néel-type magnetic skyrmions, which in turn accounts for the observed THE in transport. Besides the fundamental significance, the understanding of THE in oxides and its electrical manipulation presented in this work could advance the low power cost topological electronic and spintronic applications.

Research Area(s)

  • gate-tunnable Dzyaloshinskii Moriya interaction, oxide spintronics, oxygen octahedral tilting, SrRuO3 films, topological Hall effect

Citation Format(s)

Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO3 films. / Gu, Youdi; Wei, Yi-Wen; Xu, Kun; Zhang, Hongrui; Wang, Fei; Li, Fan; Saleem, Muhammad Shahrukh; Chang, Cui-Zu; Sun, Jirong; Song, Cheng; Feng, Ji; Zhong, Xiaoyan; Liu, Wei; Zhang, Zhidong; Zhu, Jing; Pan, Feng.

In: Journal of Physics D: Applied Physics, Vol. 52, No. 40, 404001, 02.10.2019.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review